
 1

A Proposal on Symbol Pin Mapping

for KiCad v6

Ajith N.
@EL84 [KiCad Forum]

NOSPAMajith@zoidlabs.comNOSPAM
12 Sep 2019

 2

Summary of Key Points
(as related to the Data Model)

● Proposal to modify / extend / replace physical
“pin number” with “list of pin numbers”
– Backward compatible: single pin = list of one item

– Other benefits are discussed

● To elevate pin mappings into ‘proper’ entities
– As assets living in libraries
– (This is already in developers’ plans in some form, AFAIK)

In the following slides, highlights are marked in red.

 3

Symbols, Pins, Pin Identification

Symbol
‘S’

Pin Pin Name

List of Pin Numbers

A symbol S has a set of pins (“logical pins”) P
 Each pin:
 - has a pin name (a.k.a logical pin name)
 - has a list of pin (physical pin/pad) numbers – (could be an empty list)
 - has many other attributes (for rendering, electrical class etc) – ignored for now

Rationale #1: Associating a logical pin with a list of physical pin numbers
(as opposed to exactly one pin), reduces schematic clutter.

 (Further, benefits of an empty list are developed later on)

(may be empty)

(mandatory)

P = Set of pins of S

Pin

...

(We have ignored for now the other attributes of a symbol; such as the structure of units, footprint
information, BoM attributes etc, for simplicity)

 has a

 has a

 has a

 4

Constraints and Non-Constraints

Symbol
‘S’

Pin Pin Name

List of Pin Numbers

1. P may be empty – i.e., a symbol which has no pins is also allowed.

2. A pin must have a Pin Name (name is mandatory)

3. Pin names do not need to be unique within a Symbol
 E.g. We may have two logical pins, both named GND.
 Examples of usefulness: 1. Where one maps to a large thermal pin, and the other to a normal pin.
 To enable thermally good layout, a concerned schematic designer can connect them to different
 nets in the circuit, and assign these nets to different net classes. 2. Also used in multi-Unit situations

4. Pin numbers must be unique within S. For example:
 Pin VCC : name = ”VCC”, pin-numbers = [2, 16] … is in conflict with
 Pin GND : name = ”GND”, pin-numbers = [2, 10] (as pin number 2 appears in both).

(may be empty)

(mandatory)

P = Set of pins of S

Pin

...

 has a

 has a

 5

Unmapped Pins

Symbol
‘S’

Pin VCC

An unmapped pin is a pin without a pin number – i.e. its list of pin numbers is empty.

Unmapped pins are/were a “problem” because:
 - They must generate ERC warnings/errors
 - They will be unconnectable in Layout, and must generate connectivity errors

But, unmapped pins are worth tolerating... because:
 - Circuit creation and schematic capture, simulation, part selection, etc are

not hampered by the presence of unmapped pins in symbols.
 - Pin Mapping is footprint dependent
 - (Other use-cases supporting this notion will be developed in later slides)

Btw: in KiCad v5, setting pin number to “~” effectively makes the pin unmapped (but not much more can be done with it)

(list of pin numbers
for VCC is empty)

(pin name)

P = Set of pins of S

Pin

...

Example of an Unmapped Pin

 6

“Pin Mapping” as an entity on its own

Symbol S

Pin VCC

5, 16

A pin mapping associates a pin name to
a list of pin numbers.

e.g. VCC → pins 5, 16
 DIR → pin 2
 etc.

name

P = Set of pins of S

Pin

...

List of pins

DIR

2

name
List of pins

VCC

5, 16

Shorthand notation

Pin Name
List of Pin Numbers

(used hereafter)

 7

Symbol with Unmapped pins

Symbol S

Pin VCC

An unmapped symbol is one with one or more unmapped pins.
(Could be called a generic symbol, an abstract symbol or more precisely,
a symbol with incomplete pin mappings)
(In contrast, a pin-committed symbol is one in which all pins are mapped).

Set of pins of S

Pin

...

DIR

Pin GND

~

~

~

 8

Of what use, these unmapped symbols ???

Pin
VCCGood (good enough) for -

 Schematic work & Simulation
 Allows early stage design tasks to proceed
 (Schematic review, refactoring, simulation,
 part/footprint selection etc)

What else?

#1. Unmapped symbols increase symbol availability.
 E.g. a generic NMOS FET Symbol allows a new
 KiCad user to get started with schematics immediately.

 (If an Atomic Part is already available and identified, symbol availability is
 not a matter of concern. Atomic part use-cases should be supported well
 without any issue. Beyond that, this discussion has very little impact on
 Atomic Part use-cases).

 For example (details in the next slide): to use NMOS FET FDG311N in a schematic,
 There is currently no library symbol that can be readily dropped in.
 At the schematic stage, not having a symbol is a barrier.
 Lack of availability of a suitable symbol is worth addressing at the root cause level.

Pin

...

DIR

Pin GND

~

~

~

 9

Symbols Scarcity – Example

Claim: Unmapped symbols alleviate the issue of symbol unavailability / scarcity.

Example

Consider Joe, a KiCad user who is not yet proficient in creating library assets.

Joe wants to use an NMOS FET FDG311N (Fairchild) in a design because
 it is a good fit for his needs.

Currently there exists no Atomic Part for any FDG311N device.

FDG311N comes with only one footprint.

Symbol graphic, as can be found in data sheet.
 … and what chance you’ll say that’s pretty neat?

 10

Symbols Scarcity – Example
(Claim: Unmapped symbols increase symbol availability).

Pin mappings for this footprint are:
FDG311N: { D → [1,2,5,6] ; G → [3]; S → 4 }

No suitable symbols are available. Why?
 (Hint: Not because library creators were lazy or lax)

There are at least 8 NMOS symbols in the “Device” library.

But none are suitable for FDG311N. Why?

A desired
unmapped

(generic)
symbol,

good
enough for
schematic

work

A highly
desirable
pin-
committed
symbol,
layout-ready

1,2,5,6

4

3

Shows how
associating a
list of pins with
a single pin name
allows re-use of the
symbol graphic and
reduces
visual clutter

(Note: these hypothetical symbols are not to be found in available libraries;
even as the beautiful graphic symbols shown above are very much from KiCad libraries!)

 11

What use, Unmapped Symbols?

Pin
VCCBy separating pin-mapping from other aspects of a

symbol :
#2. We can increase symbol re-use (from libraries).

 Currently, due to lack of such re-usability, there are
 at least 8 NMOS symbols in the “Device” library
 (but none are suitable for FDG311N).

 Also there are over 20 NMOS symbols in the Digikey
 Library (again, none suitable for FDG311N).

 Other similar instances are documented in the KiCad User Forum (see References).

 Root cause of the issue is – tight coupling of the implicit pin-mapping
 which is baked into the symbol.

 Conversely, implicit pin-mapping reduces the suitability of those library symbols
 for re-use. They are not really as generic/re-usable as they would otherwise be.

 It is also highly desirable to have fewer schematic symbols in the library.
 That would keep libraries small and symbols highly utilized, making library effort well spent.

Pin

...

DIR

Pin GND

~

~

~

 12

What if… we store the mapping in the footprint?

In footprint, use a
non-standard pin numbering

Custom Footprint
(pin numbering
is customized)

Oh No! It works, but is a poor solution.
Symbol and footprint were easily customized by copying from
library and changing field values.
But non-standard pinning is harmful, will confuse assembly
 and troubleshooting etc

Say, in the symbol, we map pin name ‘G’ to
pin number ‘G’
(KiCad accepts non-numeric pin numbers)
Somewhat similar to unmapped pins but
not quite

 13

With v6 Symbol File Syntax
(intent is only to demonstrate feasibility of expression in v6)

 (pin ...
 (at ...)
 (length ...)
 (name “NAME” ...)
 (number “NUMBER” ...)
)

A logical pin, mapped to a single
physical pin (identified by “NUMBER”)

 (pin ...
 (at ...)
 (length ...)
 (name “NAME” ...)
 ((number “NUMBER1” ...)
 (number “NUMBER2” ...)
 ...)
)

A logical pin, mapped to a
list-of-pin-numbers

 (pin ...
 (at ...)
 (length ...)
 (name “NAME” ...)
 ()
)

An unmapped logical pin

Conclusion: v6 Symbol syntax is
already equipped to handle these
cases:

- a list of pin numbers,
- a single pin number,
- an unmapped pin.

Proposed

Or a more regular syntax: (pin ... (pads (number…) (number…))) could be used.
Symbol format for v6 handles lists naturally thanks to S-expr’s roots in LISP.

 14

Interim conclusions

● Pin mapping, from pin name, into a list of physical pins is good
● It is expressible in v6 symbol file format
● Unmapped generic symbols are useful; they fill a gap
● Generic (standard, consistent) footprints are good. Standard numbering is vital.

– Lethal mutants -- e.g. custom numbered SOT23-3 in part AH1804 – are thankfully rare.

● Having pin mapping as not necessarily implicit in the symbol, will be good
● Having pin mapping implicit in footprints is harmful, not recommended

– KiCad can show the way for best practice, it will help users resist that specific temptation.

● It is far better to use library symbols and library footprints unmodified (if that is possible);
especially the graphics, footprint geometry and the pinning.

● Atomic parts are good but scarce
– N pin-committed symbols with M possible pin mappings makes a large space of size M x N which is

sparsely populated or conversely, is pointless to populate densely

● The wait for atomic parts can be a long wait… (Economics)

… moving on to suggested mechanisms

 15

Applying a mapping to a pin
(taking the GND pin for example)

A
generic

(unmapped)
symbol

GND

4,8

The mapping

...

Pin GND

~

+

...

Pin GND

4,8

GND pin is now mapped

Unmapped generic symbol + Pin Mappings → Pin-committed symbol

GND pin is unmapped

apply

Note: Symbol Graphic can be re-used as-is. Also logical pin’s electrical class, etc

(before)

(after)

gives

 16

Applying pin-mappings to a symbol

Un-
Mapped
Symbol

‘S’

S

Chosen
Footprint ‘F1’

Generate or
Look-up or

Select
Pin mapping

Apply
Pin Mapping

and / or
Edit

Pin Mapping

Associate
Footprint

F1

F1

Pin-
Committed

Symbol

- Suitable for
Insertion into
Schematics

- Ready for
Layout

Could be saved
as a library asset
or even as an
Atomic Part

(detailed on next slide)

Legend: Data flow

Note: Pin mappings are, by definition, footprint dependent.

 17

Generating / Selecting a Pin-Mapping

Chosen
Footprint ‘F1’

Library of Pin Mappings

Structure:
Non-uniquely indexed by (S,F1) and uniquely indexed by MPN (optional) or uuid

Symbol ‘S’
If S has an MPN(or other uuid), lookup Library for pin
mapping for this MPN;
 If found, select it; DONE.

Retrieve pin mappings from Library for (S, F1)
If unique, select it; DONE.

If many exist, present to User; User selects; DONE.

If none exists:
 Create set of physical pins from F1;
 Create set of logical pins from S;
 Present initial pin mapping table to user, to edit;
 Run validity checks/constraints upon edits;
 (User verifies against data sheet);
 Accept user-edited pin mapping; DONE

Note: Editing of the mapping in an already mapped symbol can be similarly supported.

 18

Pin mapping as an asset

Creation from scratch: A default pin map can be generated as a
template to seed the editing process; the flow could be as follows.
● GUI presents a mapping table, with pin numbers (generated

from Footprint) on column #1 and logical pin name choices on
column #2; one row per pin number. User selects the
corresponding logical pin name on column #2 (e.g. aided by a
list containing all candidate pin names) and associates the two.

● Save edited mapping to a library, with MPN (or a uuid) as
unique key (for supporting Atomic Parts), and/or:

● Save edited mapping to a library, with (Symbol, Footprint) as
non-unique key for later retrieval.

 19

Applying a pin mapping is
extending a “base” symbol

(Caution: this is based on a cursory reading of the planned v6 Symbol documentation!)

● For a mapped (or unmapped) logical pin in any symbol S, applying a pin
mapping amounts to the over-riding (or first-time setting) of a property of that pin
within S.

● Such property change in S amounts to “extending” S to become S1 where S1 is
the “extended symbol” derived from S.

● It then seems logical that an unmapped symbol is a candidate “base symbol” in
being “purer” or “more abstract” which can be “extended” to produce concrete
symbols which are instantiable in design.

● Certainly, there are other forms of extending a base symbol to include BoM
information etc, but applying/modifying pin mappings is already part of the
possibilities envisioned for v6.

● It is possible to view Atomic Parts as fully extended symbols which are flagged
as final, that is, are not permitted to be any further extended.

 20

Supporting Atomic Parts

For Atomic Part use-case, the expectation is that the libraries used are trusted
to a high level. Verification by user could then be skipped without adverse impact.
This can be achieved if these symbols (and properties) are immutable, once created.

Atomic Part Symbols can be treated as Extended Symbols which are closed for further
 extension. However, supporting minor variants of footprints such as a
 hand-soldering variant, is acceptable and desirable. The primary attraction
 of Atomic Parts is that it locks in the type of footprint, but not the exact variant.
 On closer examination, it is really the pin-mapping (which is indeed footprint
 dependent) that makes Atomic Parts attractive. (BoM attributes comes second).

Since an MPN will be available when Atomic Parts are used, Atomic Parts could
 be instantiated through a process of “extension” (i.e., applying property
 changes), in terms of applying a pre-defined and immutable pin mapping.

If that route is taken, then Atomic Parts can be handled well and in a
unified manner by maintaining its pin mappings uniquely indexed by MPN (or
other uuid).

 21

Backward compatibility
for Atomic Parts of today

Symbol
‘S’

with
pin

mappings

Chosen
Footprint ‘F1’

Associate
Footprint

F1

Pin-
Committed

Symbol

DONE.

Bypass!Atomic Part “Symbol”

S

Apply
Pin Mapping

and / or
Edit

Pin Mapping

F1

(This shows “bypass path” modifying the data flow shown in page 16)

Generate or
Look-up or

Select
Pin mapping

Atomic Part symbols
of today are,
by definition,
pin committed.

 22

Problems addressed & some
References

● Handling of multiple physical pins per logical pin:
– Solves the ERC issue in: https://bugs.launchpad.net/kicad/+bug/1469525

– Addresses the “oddball problem” in:
 https://forum.kicad.info/t/erc-with-symbol-providing-multiple-ground-outputs/13268

● Issue of Symbol proliferation (One-symbol-variant-per-footprint), eg:

https://forum.kicad.info/t/relating-pins-and-pads-kicad-pitfalls-for-newcomers/6186

● Related references

https://forum.kicad.info/t/some-thoughts-on-the-underlying-data-model-symbols/18502/

https://forum.kicad.info/t/idea-for-pin-mapping-hard-wired-items-ie-mosfets/18586

(Recent threads on this topic)

https://forum.kicad.info/t/chips-with-distinct-pin-numbers-per-footprint-type/3584

(Pin mapping issues)

https://forum.kicad.info/t/notion-of-part-in-kicad/4057 (Makes the case for separate pin-mapping)

https://forum.kicad.info/t/some-thoughts-on-the-underlying-data-model-symbols/18502/
https://forum.kicad.info/t/chips-with-distinct-pin-numbers-per-footprint-type/3584
https://forum.kicad.info/t/notion-of-part-in-kicad/4057

 23

Thanks & Acknowledgements

● To KiCad Developers, for KiCad
● To KiCad Librarians & various asset creators
● To KiCad User Forum members, for

discussions & sharing

	Proposal
	Summary
	Pin identification
	Rules
	Unmapped pins
	As entity
	Unmapped Symbols
	Use of
	Case.p1
	Case.p2
	Use
	Not recommended
	v6 Format
	Interim Conclusions
	Applying pin mapping
	Applying pin mapping.2
	Generating/Selecting
	As an asset
	Applying=Extending
	Atomic Parts Yes
	Atomic Parts
	References
	Thanks

